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Abstract—It is well known that sparse identification in
high-dimensional engineering systems faces two major
obstacles: (i) ill-conditioning caused by strong collinearity
among variables, and (ii) feedback-induced endogeneity
that produces non-independent and identically distributed
(i.i.d.) and non-stationary observations. While these issues
severely hinder reliable model discovery, existing meth-
ods typically address them in isolation. In contrast, this
paper jointly considers these obstacles and proposes a
two-stage adaptive identification scheme that combines a
weighted L; penalty for sparsity and exact support recov-
ery with a quadratic penalty that mitigates ill-conditioning
from highly correlated regressors. Under excitation require-
ments much weaker than classical persistent excitation,
global guarantees are derived via martingale techniques:
all zero coefficients of the sparse parameter vector are
identified with probability one after finitely many observa-
tions, the estimates of the nonzero coefficients converge
almost surely to their true values, and these estimates are
asymptotically normal. A group-selection property is also
established: highly correlated yet relevant variables are
retained together, avoiding the typical L; limitation under
collinearity. The results do not rely on i.i.d. assumptions
and are applicable to the identification of closed-loop lin-
ear stochastic systems with adaptive regulation. Numerical
examples and a real robot-arm case study corroborate the
theory and demonstrate performance improvements.
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[. INTRODUCTION

With the rapid growth in the size and complexity of datasets,
the need for efficient data processing and analysis has become
increasingly urgent. Sparse identification offers a powerful
way to manage such complexity by extracting only the most
relevant information [1]. It has attracted considerable attention
in a wide range of disciplines, including systems and control
[2], signal processing [3], statistics [4], and machine learning
[5]. By aiming to accurately recover both zero and nonzero
elements of sparse parameter vectors, sparse identification rep-
resents complex data with a minimal set of features, producing
parsimonious and reliable predictive models [6].

In statistics, a wide range of sparsity-promoting techniques
has been developed to perform variable selection by pe-
nalizing coefficient magnitudes, thereby retaining only the
most relevant predictors. Representative examples include the
Least Absolute Shrinkage and Selection Operator (LASSO)
[7], Smoothly Clipped Absolute Deviation (SCAD) [8], elas-
tic net [9], adaptive LASSO [10], and Minimax Concave
Penalty (MCP) [11]. Within the time series domain, sparse
regression has been extensively investigated in the literature.
For example, [12] proposed regularized methods for high-
dimensional vector autoregressive (VAR) models; [13] applied
adaptive LASSO for large VAR modeling; and [14] examined
the finite-sample performance of regularized autoregressive
estimators. More recently, [15] reviewed how modern machine
learning techniques can advance time series forecasting, with
emphasis on methodological developments and applications.
While these works explicitly consider temporal dependence,
they usually rely on assumptions such as stationarity of the
noise and weak dependence. In the systems and control com-
munity, sparse adaptive algorithms have also been explored.
Notable contributions include the recursive L;-regularized
least-squares (LS) algorithm proposed by [16] and the adaptive
greedy algorithm in [17] for online sparse recovery, with
applications to FIR channel identification and linear prediction.
Despite their effectiveness in specific scenarios, these existing
statistical and control approaches typically rest on restrictive
assumptions, such as independent and identically distributed
(i.i.d.) stochastic inputs, known innovation distributions, or
specific dependence structures, and may not offer general
theoretical guarantees [18]. More recently, [19], [20] studied
methods to reduce mutual coherence in sparse system identifi-
cation, proposing coordinate-transformation and input-design
approaches that improve estimation accuracy and model order
selection.



However, in many real-world applications, including control
systems [21], financial time series [22], federated learning
[23], and wireless communication channels [24], these as-
sumptions are often violated. In particular, closed-loop feed-
back control systems seldom satisfy i.i.d. or stationarity con-
ditions, as control inputs are inherently correlated with past
outputs and disturbance processes. This discrepancy highlights
the importance of developing sparse identification methods
that can operate reliably under non-stationary, non-i.i.d., and
feedback-dependent settings, while retaining rigorous theoret-
ical guarantees [25].

Some initial progress has been made on sparse identifi-
cation in the non-i.i.d. case. For example, [18] proposed an
LS algorithm with weighted L; regularization that accom-
modates general observation sequences, and established its
convergence; [26] extended this framework to multivariate
ARMA systems with exogenous inputs. More recently, [27]
introduced an L., regularization method (0 < v < 1) for sparse
parameter identification in stochastic systems, proving both
exact support recovery (set convergence) and consistency of
nonzero parameter estimates under general conditions. Despite
these advances, a common limitation of L;-type regularization
methods has long been recognized: they can become unstable
in high-dimensional settings, especially when predictors are
highly correlated [4], [9]. In practice, high dimensionality
almost inevitably leads to large sample correlations [28], mak-
ing the collinearity problem unavoidable. In system identifica-
tion—an inherently inverse problem—collinearity can cause
numerical instability [29]. Moreover, estimating continuous-
time impulse responses is ill-posed: small observation errors
can result in large estimation deviations, and finite discretiza-
tion further exacerbates this issue. Additionally, higher-order
autoregressive with exogenous input (ARX) models can suffer
from high variance in conventional algorithms [30].

To address ill-conditioning, classical works by [31] and
[32] proposed regularization methods. Later, [33] introduced
kernel-based regularization methods in reproducing kernel
Hilbert spaces, with further progress in kernel design [34] and
in hyperparameter estimation [35]. These approaches enhance
stability mainly through Lo-type regularization, but they are
not primarily designed to exploit sparsity, and thus often keep
many predictors rather than yielding parsimonious models.

Motivated by these challenges, we study sparse identifi-
cation of stochastic systems with non-stationary, non-i.i.d.
observations and strong collinearity. We present a weighted
L, — Lo regularization scheme that performs reliable variable
selection, mitigates collinearity-induced ill-conditioning, and
admits rigorous guarantees. The main contributions are:

e This paper proposes a regularized two-stage adaptive
identification scheme that combines weighted L regular-
ization with a quadratic penalty. The adaptive weighted
L, term promotes sparsity and achieves exact support
recovery, while the quadratic term regularizes collinearity
and stabilizes high-condition-number designs. Compared
with pure L; or quadratic-only approaches, the com-
bined design yields more reliable variable selection under
strong correlation and more stable parameter estimates.

o Leveraging martingale techniques, this paper establishes
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global convergence guarantees under mild excitation: (i)
all zero coefficients are identified after finitely many
observations with probability one; (ii) the estimates of the
nonzero coefficients converge almost surely to their true
values; and (iii) the estimators are asymptotically normal.
Compared with existing theory, these results dispense
with ii.d. assumptions, rely on excitation conditions
strictly weaker than classical persistent excitation (PE),
and remain valid for closed-loop control systems.

o The group-selection property is established: when rele-
vant regressors are highly correlated, the method retains
them jointly, whereas the approach in [18] may select
only one. The proposed algorithm is also applied to
the identification of closed-loop linear stochastic systems
with adaptive regulating control and achieves finite-time
set convergence almost surely. Simulations show lower
prediction mean squared error (MSE) than pure L; meth-
ods and yield more parsimonious models than kernel-
based methods.

The remainder of the paper is organized as follows. Notation
appears at the end of Section I. Section II introduces the
problem formulation and regularized sparse algorithm. Section
IIT develops the theoretical results: parameter and set conver-
gence, asymptotic normality, and the group effect. Section
IV applies the algorithm to sparse identification of linear
stochastic systems with adaptive regulating control. Section
V presents simulations and real examples, and Section VI
concludes with a summary and future research directions.

Notation: Let (2, 7, P) be the probability space, w € ) be
a sample point, and E(+) be the expectation operator. ||-|| 7 and
|I-|| denote Frobenius norm and 2-norm for vectors or matrices,
respectively. By R and N, we denote the sets of real numbers
and positive integers, respectively. I, denotes the identity
matrix of order p, 1, = [1,...,1]T € RP and 0, = [0, ...,0] " €
RP. Moreover, sign(-) is defined as sign(z) = 1, when z > 0,
and sign(z) = —1, when = < 0, and vec(z(j))|{_, means
[z(1),2(2),...,2(q)]". For the vector =, we denote its jth
element by x(j). For any two positive sequences {ax} and
{br}, ar = O(by) means there exist ¢ > 0 and ko € N such
that ay, < cby, for all k > ko; ar, = o(by) means ay /by — 0
as k — oo; and ap =< by means there exist c¢i,co > 0 and
ko € N such that c1b; < a < coby, for all £ > k. For a
symmetric matrix A, we use Amax(A4) and Apin(A) to denote
A’s maximal and minimal eigenvalues, respectively. For two
random sequences {zx} and {yx}, 2 = O,(yx) means that
for any € > 0, there is a finite M > 0 and a finite /N > 0 such
that P {|zx| > M|yx|} < e for all k > N; z1, = 0,(yx) means

zk/yr — 0 as k — oo, where — means convergence in
probability.

Il. PROBLEM FORMULATION AND ALGORITHM DESIGN
A. Problem formulation
Consider the following stochastic sparse system:
Y1 =0 @p + wpg1, k>0, (1)

where 0 = [0(1),...,0(p)]" € RP is the unknown sparse
parameter vector, ¢ € RP, consisting of possibly current and
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past inputs and outputs, is the stochastic regressor vector, Yx41

and w1 are the system output and noise, respectively. Denote

the set of zero elements of the unknown parameter 6 by A*

{j :0() =0, 7€ {1,...,p}}. Suppose that there are ¢

nonzero elements in the vector 6. Without loss of generality,

we assume that 8(j) # 0 for j = 1,...,q and 6(j) = 0 for
i=q+1,...,p.

To proceed, we outline the assumptions used in the theoreti-
cal analysis. These conditions allow the regressor sequence ¢y,
to be non-i.i.d. and have broader applicability, encompassing
the classical persistent excitation condition as a special case.

Assumptions. Denote the family of the o-algebras Fj, =
Yk, Y1, Uy oo UOy Whesy -+ o, W1, Wy ., W, K > 1,
where {u} and {w}} are system inputs and a possible
sequence of exogenous input signals, respectively. Denote
the maximum and minimum eigenvalues of » ;_, gpkgo; by
Amax (1) and Apin (1), respectively. We first give assumptions
about the system noise and observation sequence.

(A1) The noise sequence {wy,Fi},~; is a martingale dif-
ference sequence and there is § > 0 such that
supy, E/£|U’k+1|2+5 | Fr| < oo, as.

(A2) For all k£ > 1, ¢, is Fj-measurable.

(A3) For the maximal
S h_ Prpi, it holds

log Amax(n)

(a) )\min(n)

Amax (1) [1og Amax(n)

Amin (1) Amin (1)

Remark 1: Assumptions (A1) and (A2) allow the regressor
sequence (y to be non-stationary and non-i.i.d. In (Al), the
noise process {wy, Fr} is a martingale difference sequence,
which is more general than a sequence of independent ran-
dom variables and imposes a weaker restriction on temporal
dependence. This permits wgy; to depend on Fj and is
satisfied by many common distributions, such as Gaussian
and uniform. Assumption (A2) requires that ¢ be adapted to
{F%}, a condition met by a wide range of systems, including
PID control, adaptive regulation, and model reference control.
Assumption (A3) concerns the growth rates of the maximal
and minimal eigenvalues of the sample covariance matrix of
¢i. Condition (A3)(a) corresponds to the classical weakest
strong convergence requirement for LS [36], ensuring param-
eter convergence. Condition (A3)(b) is used for establishing
set convergence in sparse identification; it is, to the best of
our knowledge, the weakest known condition for this purpose
and includes the traditional persistent excitation condition as
a special case [18].

and minimal eigenvalues of

0 a.s.,
n—oo

(b)

0 a.s.

n— oo

B. Research motivation

In high-dimensional system identification, a major challenge
arises when the regressors exhibit strong correlations, which
can lead to numerical instability and unreliable parameter
estimates. This phenomenon, referred to as collinearity, is well
documented in both statistical modeling [37] and large-scale
system identification [38]. Formally, collinearity describes the
presence of exact or near-linear dependence among a set of
regressors. In the exact case, the data vectors representing &

regressors lie in a subspace of dimension strictly less than
k, implying that at least one regressor is an exact linear
combination of the others. In practice, exact collinearity is
rare, whereas near collinearity, where regressors lie approx-
imately in such a subspace, is common and often leads to
significant deterioration in estimation accuracy. A standard
quantitative measure of the collinearity is the condition number
k(n) = i:“;‘((z)), where Apax(n) and Apin(n) denote the
largest and smallest eigenvalues of > ;'_, gokgoz, respectively.
Large values of x(n) indicate severe collinearity [39].

Remark 2: This measure directly relates to Assump-
tion (A3), as the relative growth of Apax(n) and Apin(n)
governs the estimator’s convergence properties. In particu-
lar, these conditions allow for certain moderate collinear-
ity scenarios under which the sample condition number
K(n) = Amax(n)/Amin(n) may still diverge. For example, if
Amin(n) < n and Apax(n) < nlogn, then k(n) < logn — oo
while the assumptions remain satisfied.

In words, collinearity means that some regressors are almost
linear combinations of others, so the matrix ZZZI kaga; will
have a large condition number. This leads to inflated variance
in the parameter estimates, instability in the solution path, and
difficulty in correctly selecting relevant variables.

To address these challenges, most existing approaches build
upon the classical LS estimation framework, incorporating
suitable regularization to improve stability and interpretability.
Given the observed data {yx11, ¢}, the LS estimate of the

parameter vector 0,11 = [0, 1(1),...,0,11(p)]" is

n -1 n
Ony1 = <Z @k@kT> <Z sﬁkykﬂ) .
k=1 k=1

Regularized LS with weighted L, penalties. For sparse
parameter identification, [18] proposed a weighted L; regu-
larization method based on the LS estimate, solving

2

n p

2 1 .
TEB) =D (ka1 — BT 0r) A0 D ———I18(), B
k=1 j=1 |0n+1(5)]
where \,, > 0 is a tuning parameter, and
N . . . . log /\max n .
On+1(7) = Ont1(d)+sign(0n41(5)) )Wa J=1...

While this approach induces sparsity and enjoys favorable
asymptotic properties under non-i.i.d. and non-stationary ob-
servations, relying solely on an L; penalty can lead to in-
stability in the presence of collinearity [9], and it lacks the
grouping effect, often selecting only a single variable from a
set of highly correlated regressors.

Regularized LS with quadratic penalties. To improve
numerical stability in ill-conditioned problems, [29], [30]
introduced a quadratic regularization term 37 PS3 with P > 0:

n 9 _
T2B) =" (yns1 — B er)” + BT P,

k=1

4)

where ), > 0 controls the trade-off between data fitting and
the quadratic penalty. This quadratic term effectively mitigates
variance inflation in the estimates and enhances the stability



of the estimates under collinearity [29], but it does not directly
promote sparsity.

Identification objective. Motivated by these observations,
our aim is to develop a unified estimation framework that
simultaneously achieves variable selection, accurate parameter
estimation, and improved predictive performance for stochas-
tic sparse systems under non-i.i.d., non-stationary, and ill-
conditioned settings. The proposed methodology seeks to
consistently identify the zero coefficients A* and estimate
the nonzero coefficients of the unknown parameter vector
from {yx+1,pr}r_,, while providing theoretical guarantees
of parameter convergence, set consistency, and asymptotic
normality.

C. Regularized sparse identification algorithm

In this subsection, we develop a two-stage adaptively
weighted regularized method that integrates the advan-
tages of sparsity-promoting penalties with stability-enhancing
quadratic regularization, while being tailored for non-i.i.d.,
non-stationary, and potentially ill-conditioned settings.

Stage 1 (stable preliminary estimation). Motivated by the
numerical stabilization effects of kernel-based quadratic regu-
larization [29], [30], we first solve the following penalized LS
problem:

n
= (yr1 - BT ek)’

k=1

JS(B) (1) Z |B |+/\2n/8TPn/Ba

®)
where /\&) > 0 enforces sparsity, Az, > 0 controls the
quadratic shrinkage, and P,, > 0 is a design matrix reflecting
prior structural information. The initial estimate is obtained as

B = arg min J,(8). (©)

Stage 2 (adaptive sparsity refinement). Since a plain I
penalty requires strong irrepresentable conditions for consis-
tent variable selection [40], we adaptively reweight the L,
term using the Stage-1 estimate (6), in the spirit of [18]. To
prevent degeneracy when 3% (j) is close to zero, we introduce
a stabilizing offset that depends on the spectral properties of

S h_, orpi and Py

log Amax (1)
)\min (Tl)

) (7

B0(5) =B () + sign(50 (7)) (

A(l) + >\2n)\max(Pn)
)\mln (Zk:l SﬂkSOk + )\ZnPn)
The refined problem is then

n

j’nﬁ = Y _ﬂTQO 2+>\(37) > 6.7

D=2 e =) N 2 g PO g
+ A2n BT P,

yielding the final estimator

Bn:argérel%; Tn(B), An={j € {1,....p}|Bu(j)=0}.

This two-stage design allows the first stage to stabilize the
estimation under collinearity, while the second stage sharpens

IEEE TRANSACTIONS AND JOURNALS TEMPLATE

sparsity recovery with adaptive weighting, preserving both
numerical robustness and variable selection consistency.

Conditions on regularization parameters. To establish con-

vergence, sparsity recovery, and asymptotic normality, we im-

pose the following conditions on the regularization sequences.

(A4) The positive regularization parameters {)\&)}, {/\g,) }
and {)\a,,} in (5) and (8) satisfy the following:

AL LB X Amax(Pn)

in
(a) >\min (n) + )\2n>\min(Pn) n—oo
(6) Aondmax(Pn) = OON)),
() 108 Amax(n) Amax (n)
)\min(n) )\(2) n—oo ’
@ MY 4 donAmax(Pr) Amax(n) [log Amax(n) .
A(i) /\min(n) Amin(n) n—oo’
(Agg + A2n)\max(Pn)) )\max(n) 0
(6) )\min(n)2 n—oo ’

These conditions balance the sparsity-inducing and stability-
enhancing effects of the penalties, ensuring well-posedness
of the intermediate problems and enabling the theoretical
guarantees established in Section III.

Remark 3: Assumption (A4)(a) ensures parameter conver-
gence of the proposed algorithm, while Assumption (A4)(b)
allows adaptation to a broader range of scenarios. The overall
Assumption (A4) is imposed to guarantee set convergence.
Under the modified formulation in which Ag, appears in
the form Aoy Amax(Prn) and Amin(n) + AopAmin(P) in the

denominators, Assumption (A4) can be fulfilled with the
following simple choice:
log Amax(n)
1 max
>\2n)\max<Pn) = )\min(n)a Agn) = Amin(n) )\7(71)
log Amax(n)

A2 Mo maxi’®) 10
in (n) )\min(n) ( )
Indeed, noting that Azrdmex(Pn) — L = o(1

A ? ee(P )nO - Aa (n) M V108 Amax (n) ol),
2nAmax (L min (7 1 _ :

DT o) Vi~ o1 @ direct
(1), 4 (2)
calculation  shows  that AiT;:E\n) : /\’\Qi” "'::’(‘g: )) =
Amax (1)  /1og Amax(n) | _ log Amax () . Amax(n) _
05zl /o2 ) = o(), el D
log Amax (1 )\Sl +A2n max(Pn)

O( S e )> = o), e

Amax (1) log Amax(n) log Amax (1) _

Emm(n) i,jm(n) = O( St ) = o),
A 20 Amax (Pr) ) Amax (1 max(n) /108 Amax (1)

Nnin (12)2 _O( N nin (12) Amin (1) ) o(1).
The specific algorithm is shown in Algorithm 1.

Remark 4: The roles of )\(12 A(li) and Ay, can be
distinguished as follows. The parameters A§,} and )‘1n
(11) and (13) promote sparsity in the estimated coefﬁc1ents
whereas )y, is designed to improve estimation accuracy under
collinearity or other ill-conditioned settings. When both A5,
and Aﬁf are set to zero in (11) and (13), the procedure in (14)
reduces to the algorithm of [18].

Remark 5: We introduce a general quadratic regularization

matrix P, (rather than I,) because a structured P,, can encode

?
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Algorithm 1 Regularized sparse Algorithm
Step 0 (Initialization). Choose positive sequences
{)\&) 1, {)\ﬁ) tn>1 and {Aap }n>1 satisfying Assumption
(A4) or simply choose as (10).
Step 1 (Initial regularization estimate). Based on
{Yk+1,¢r}}—,, compute the estimator:

A —arg;nm{z Y1 — B ox) +A(”ZIB

k=1
+ Aon B Pof}. (11)
Let 80 = [B9(1 ),...,ﬁg(p)]T, and for 1 < j < p, define
A 1 )\max
B%)WU+WM%D<%&M?

(1)
>\ + )\Qn)\max(Pn) > (12)

Amin (Zk:l orep + AonPy)

Step 2 (Weighted regularization estimate). With A\

)\gi), Ao, and B?L (7), optimize the objective function

(1)

In>

n

Jn(B) = Z (yk+1 - BTSOk)Q
k=1
+ AQnﬂTPnﬂ

and obtain

~ T o
B = (B0, Balr)] - = argmin Ju(5),

Ay ={j=1p1Buli) =0}

A‘” 18()]

13)

IB()\

(14)

prior information, often improving conditioning and finite-
sample stability while preserving convexity; in this sense, P,
is more expressive and task-aware than I,,. Typical choices
include first-order difference [41], Laplacian-based regulariza-
tion [42], and covariance—shrinkage forms [43]. Statistically,
such P, helps control variance and improves the bias—variance
trade-off under collinearity [44]; from an optimization view-
point, any F,, > 0 maintains strict convexity and induces
a better-conditioned proximal geometry [45]; numerically,
it improves the conditioning of the regularized information
sample matrix and stabilizes estimation. These choices do not
alter the asymptotic properties established in Section III-A.
Remark 6: The quadratic regularization term AonfB ' P
in (11) and (13) may may introduce a small finite-
sample shrinkage effect, making [, asymptotically un-
biased rather than exactly unbiased. A simple bias-

~

reduction adjustment can be applied by defining 3, =
1 R
(1,,+/\2n (ZZ:WW;) Pn> B, When P, — I

P>
can be reduced to Bn = (1 + 5 ’\_Q?n)) B\n This adjustment is

consistent with the results in Subsection III-A and preserves
the asymptotic properties of the original estimator.

Remark 7: The set A} in (14) is intended to identify the
indices corresponding to zero coefficients in the parameter vec-
tor. In numerical computation, however, the exact minimizer
of (13) may not yield coefficients that are numerically exactly

this

zero due to finite precision and optimization tolerances. To ad-
dress this, one can introduce a small threshold € > 0 (e.g., € =
10719) and redefine A% = {j e{1,....p} 1Bn(j)| < €
This practical adjustment ensures stable and reliable Varlable
selection.

[1l. MAIN RESULTS OF REGULARIZED SPARSE
ALGORITHM

This section establishes the theoretical properties of Al-
gorithm 1 for the non-stationary and non-i.i.d. setting. Sub-
section III-A presents asymptotic convergence results, includ-
ing parameter consistency and exact identification of zero
coefficients with finitely many observations. Subsection III-
B derives the asymptotic normality, and Subsection III-C
investigates the group effect. While the beneficial effects of
incorporating a quadratic regularization matrix P,, have been
well recognized in the literature (see, e.g., [29]), and various
approaches for selecting P,, based on prior information have
been explored in related works, the focus here is on rigorously
establishing large-sample convergence properties for general
choices of P,. This generality allows the analysis to cover a
broad range of practical choices for P,,, and extends the results
beyond the traditional stationary and i.i.d. assumptions to the
non-stationary and non-i.i.d. settings.

A. Asymptotic convergence

For the estimate Bn and ;1;‘; generated by Algorithm 1, we
have the following results:

Theorem 1 (Parameter convergence): If Assumptions
(A1), (A2), (A3)(a) and (A4)(a) hold, the estimate Bn gener-
ated by Algorithm 1 converges almost surely, i.e., Bn(z) m)
0(i) fori=1,...,p as.

Theorem 2 (Set convergence): Let 3, = (5),,53;,)"
with Bln € RY and 52n € RP~1Z denoting, respectively, the
subvectors formed by the first ¢ and the other components of
B Let 6 = (67, 0,_,) " with 19 € R?. If Assumptions (A1),
(A2), (A3)(b), and (A4) hold, then there exists a set {)y with
P(Qp) = 1 such that, for every w € (o, there exists an integer
No(w) such that AX = A*, V n > Ny(w).

Theorem 1 establishes that the parameter estimates converge
to the true values, while Theorem 2 shows that the index set of
zero components in 6 can be identified with probability one
after finitely many observations. We now proceed to prove
Theorems 1 and 2. To this end, we recall two classical results
that will be used in the analysis.

Lemma 1: [46] Consider system (1). If Assumptions (A1)
and (A2) hold, then

<Z wwg) Z PrWr+1|| = O( log )\max(n)) , as.

k=1 k=1

Lemma 2: [46] Consider system (1). If Assumptions (A1)
and (A2) hold, then the estimation error of the LS algorithm



in (2) satisfies
1og Amax ()

||0TL+1 - 9” = O( )\min(n) > ) a.s.

Since Algorithm 1 involves two sequential steps, the con-
vergence properties are not straightforward to analyze. To
facilitate the analysis, we first consider the minimizer of a
generalized objective function associated with (8) and derive
a technical lemma on the non-asymptotic behavior of the
corresponding estimate. Given observations {yxi1,¥k}r_,
regularization parameters o, 2, > 0, regularization matrix
P, > 0, and a weight vector 1, = [17,(1),...,7.(p)]"T € R?
with strictly positive components, we define the following
auxiliary objective function and its minimizer:

n

Jn(ﬁ>a1n7a2n7nn) = (yk+1 - BT(PIC)2 + a2n5TPnB
k=1
P
+arn Y m(i)B() (15)
(16)

ﬁn(a1n,azn,nn)::ar%?HnJﬁ(ﬁ,a1n7azn7nn)
Lemma 3: Under Assumptions (Al) and (A2), the aux-

iliary estimate [, (a1n, @2n, ) defined in (16) admits the
following non-asymptotic bound:

\/ J 1 nn +C¥2n)\max Pn)

+ Q2n >\m1n (P”)

Hﬂn a1n7a2nann —9”

N ( [log )\max
mln

Proof: The proof is given in Appendix.

mln

A7)
|

From Lemma 3, we directly obtain a non-asymptotic error
bound of the estimate in (12) which yields parameter conver-
gence for the Stage 1 estimate and contributes to the overall
convergence of Algorithm 1.

Corollary 1: Under Assumptions (A1) and (A2), the initial
estimate /32 defined in (12) satisfies

N log Amax (1
|62—9=0< B Amax(n)

)\min(n)
Proof From (5), (6), (15), and (16), we have ,L
ﬁn()\ln,/\gn, 1,). The bound (18) follows directly from
Lemma 3 together with (12). [ |

A 4 Ao Amax (Pr)

(18)

We now present the proofs of Theorems 1 and 2.

Proof of Theorem 1. From (8) and (16), define 7, (i) :=
IB3@)], i = 1,...,p, and 9y = (7a(1),. ., 7a(p) "
We then have 3, = Sa ()\1737 A2n, fn). Moreover, by As-
sumptions (A3)(a), (A4)(a), and Corollary 1, we know that
B9(i) — 6(i) and B2(i) — 6(i) for i = 1,...,q, where each

0(i) # 0. Thus, for sufficiently large n, 8°(i) and (°(i) are
both bounded away from zero. Hence >_? =1 )2 =0(1),
which fits the bound in Lemma 3.

Hﬁn -0 = Hﬁn( 1n7 A2ns M) — 0
lOg Amax(”) )\(2) + >\2n)\max<Pn
Amin(n) Amln( ) + >\2’I’L)\IIIIH(P7I,)

=0

Amin (n) + )\2n)\min(Pn)> '
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Therefore, by Assumptions (A3)(a) and (A4)(a), this com-
pletes the proof. |

Proof of Theorem 2. Let ¢,

log Amax (1)
! Amin (1) A
Bln = 010 + €y Uip, B2n = ty, Uap, where u;, € R? and
Uy, € RP7Y, In addition, denote

)\5273 +/\2n)\max(Pn) _|_
Amin (1) +A2n Amin (Pr )

. Decompose the estimate 3, = (8], 53,)7

as

n o) U2 0
T n n _ | P

@kgpk - 9 Pk = ) (19)
kzzl o) @ .

where @5111) e R4, gog) € RY, and other blocks have
compatible dimensions. By Lemma 3, there exists U > 0 such
that ||, — || < t,U. Thus, ||u1,| < U. Since j, is the
minimizer of .J,,(8) in (13), it follows that

jn(Bn) - jn(/élna 0 —q) S 0. (20)
Noting (1), a direct calculation for (13) yields
Tn(Bn) = Zwk+1 +(Bn—0)" (Z ms@l) (B — 0)
k=1

+ 2 Pr (9 - ﬁn)wk-&-l + )\ZnB»IPan
k=1
1 N
FADST = 15.0)]
' g 182())]

+ t2 ulnCI)(n)uln + t2 u2n¢(22)u2

-~ 2t2 Z Wy
— 2t,, Z ng ulnwkH —2t, i g&l(f)—r

( )Tu%)

Uon W41

+ >\2n (UlTnPn 11ULn + QUMPn 12U2n + g, P 22Usy)
p—q
(2 Ay |u2n(5)]
AL |51n )|+ A , 1)
gt \/30< 2 BG1ql
where P, is block-partitioned as P, = Pt Pogo with
Poo1 Ppao
conformable dimensions. Similarly,
jn(Blm Op—q)
= Z w,%ﬂ +¢2 ulnq)(n)ul — 2t, Z wil)Tulnw;Hl
— k-=1
+ )\2nt ulnpn 11U1pn + >\(2) 0 |B1n | (22)
25 <

Subtracting (22) from (21), we obtain

T

jn(Blm Op—q) = Qti (Sok uln) (‘P}(f)TUQn)

k=1
+t u2n¢(22)u2n — 2t, Z gol(f)T

k=1
+ Aant2 (2uq, Py 12Usy + Ugy, P 22on )
), —  |uza(j)l
=8RG+ a)l
27 4 T,(f) + T3 + T + 7.

jn(Bn) -

Uon W41

(23)
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We then separately estimate Téi), 1=1,...
co > 0, we have
TV + 72

=262 3" (o} Turn) (07 T uzn)
k=1

> 2t2 uln (Z P 2)T> U2n

+ 823 (o2 Tuan)

k=1

(1 )T
> = 28 ural iz || 3 2
k=1
1 2)T
> = 2020 [fuza| |3 0l
k=1 F
> — 2620 [luanll | pred
k=1 F
> =220 ||uanll e2 | Y oreon
- k=1
> —2C2tiU”u2n”)‘maX(n) (24)

Second, by Lemma 1 and the bound /\max{q)%m)} <

Amax (1), we have

3
3 3w
=—2tnuy, (4’7(122)) ( (22)> Z@ W41

3)
T uzn W41

1 n
1 -3 2
> —2ulummH®$”2H‘(®f”) > el
k=1
Z - 2thu2nH )\max(n)% log%)\max(n)~ (25)

. o lo ")\max(n) /\(12“1’)\ n max(Pn)
Third, define v,, := 4/ %\mm(n) S )f)\% ot By

the definition of 32, Corollary 1, and the fact that 6(j) =
forj=q+1,...
that c5 < |3(5)
1 1

< — <

v B0

| <csvn, j=q+1,...,p, which implies

v J=a+1,...p (26)

C3Yn

Therefore, using (26) and the block partition of P,, we obtain

T + 1)

=Xant? (2uq, P 12Uz + gy, Pp 22Uy, ) +)\

@),

A
> = 22ont2 U || Py 1| lJuznll + 1"7 [|uzn -
Cyq

n

Now we prove that ||P, 12| < Amax(Pn). By the Cauchy-
Schwarz inequality, for arbitrary vectors z € R? and y €
RP=4, we have |z' P, 10y| < \/xTPnyux . \/yTPn_VQQy.
Taking the supremum over x and y such that |jz|| =
vyl = 1, we get [|[Ppaa] = SUD ||z ||=||y||=1 |2 Pa2y| <
SUD 4= ly=1 V& Pn117 - \/yT Pn 22y Since ||z[| = [ly[l =
1, this simplifies to || Py 12| < /|| Pn,11ll - | Pn22]]- Next,
because ||P, 11] < ||P.| and || P, 22]] < ||Py]|, we obtain:

[|Pri2ll < /NPl - [[Poll = [[Pall = Amax(Pn). Substituting

X ,b. First, using  this result into the expression for T7S4) + T,(l
lun|| < U and ||A]| < ||AllF < c2||All for some constant

, D, there exist constants ¢4 > c3 > 1 such

|u2n
Z 7 189(s

5 yields
(2)t

T + T > — 200,12 U A (Pr) [uzn || +

= [Juzn |-

27)

C4n

Combining (23) and (27), we have the following overall
lower bound for the terms:

T 472 4 78 L 7 4 7o)

Z - 202tiUHu2n”)\max(n) - 2>\2ntiU)\max(Pn)”U2n”
At

1 1
+ ClL’YnHUQnH - 2t’rL||u2n||Arnax(n) 2 10g2 )\max(n)

n

_ ARt — tn Y Amax -
1” H 2n|| 1-— 20264U 7 a (n) — 204Utn’}/n )\Qn
c (2)
4Yn >\1n
Amax (Pa o Amax (1) 1087 Aax
‘ (g) ) 9e, ) (n) 2(26;g (n) ) (28)
>\1n )\ln
Hence, by (20), (23), and (28), we have
r t m AI’I]a.X n r 7
0 ZHuQnH (1 = 2c2c4U W —2¢c4Utyvn Aon
in
1 1
. )\max(Pn) _ 264 ’V’ﬂ )\max(n) 2 ]'Og2 )\max(n) . (29)
)\(2) )\(2)
in in

On the other hand, recall that

o 108 (1) AR+ Ao Amax(P)
" )\min(n) >\m1n( ) + )\Zn)\mm(Pn),
_ IOg )\max(n) )\(1) + )\QH)\max(Pn)

Tn = Amin (n) )\mln( ) + )\2nAm1n(Pn) .

We now bound the three terms inside the parentheses of (29)
separately.

(i) First term. Expanding t,,7,, termwise, we obtain

tn’)/n)\max<n) < log )\max(n))\max(n)
AZ T ()AL
log Amax () ()\:(l’lﬂ) + )‘2n)\maX(Pn)))\maX(n)
+ )‘max(n) log )\max( ) /\(2 + )\Q"AmaX(P )
)\mm (TL) Amin(n) )‘gi)
()\(1 + )\zn)\max(Pn»)‘maX(n) )‘5273 + A2nAmax (Pn)
Aumin ()2 AL
";‘% 0 a.s. (30)

Indeed, the four terms on the right tend to zero by (A4)(c),
(A4)(d), (A3)(b)+ (A4)(b), and (A4)(e)+ (A4)(b), respectively.
(ii) Second term. For the mixed factor with Aoy, Amax (Pr), for
some constant C' > 0, we obtain

tnYn )‘QTL/\max(Pn) >\2n)\max(Pn) log )\max(n)
@ sC¢ ) A
Ao Ay min (72)
)\2n>\max(Pn) /\(1) + )\2n)\max(Pn)
)\gi) >\m1n( ) + >\2nAmm (Pn)

—— 0 a.s. (by (A3)(a),(A4)(b) and (A4)(a),(A4)(b)) (31)

n—oo



(iii) Third term. Finally,
Amax (TL)% log% Amax (n)'YTL
2
A
log Amax (n))\max (n)
= NE)
Am1n (n) 2 )‘171
+ ( (1) + )\QnAmaX(Pn)))‘de( )% lOg% )\max(n)
mln( >\(2)
_ log Amax (’I’L))\max( ) mm( )
Amin (n))\ﬁ) Amax (1 ) 1
Agv) + )\2n)\max(P") Amax( ) IOg AmaX(n) Amin (n)j
A Amin () | Anin (1) x () 2
—— 0 as. by (Ad)(c) and (Ad)(d) (32)
Combining (30), (31), and (32), we deduce that each of the

three terms inside the parentheses of (29) converges to zero
a.s. Hence, for all w € Q with P(Qp) =1,

tnYn )\max( ) R /\2n>\max(Pn)
— " —2¢4U
)\(2) )\(2)
1n 1n

S

1-— 26264(7

Yo Amax (1) 2 1082 Amax (1)
)\(2)

In

— 2¢y > 0.

Substituting this into (29) yields ||uz, || = 0 for all sufficiently
large n, a contradiction unless A’ = A*. This completes the
proof. ]

B. Asymptotic normality

In this section, we show that the estimates of the nonzero
elements of the parameter vector generated by Algorithm 1
are asymptotically normal.

Theorem 3: Assume for each n that there exists a deter-
ministic symmetric positive definite matrix R,, such that

R0 50, max Ryl 0, (33)

Jim B (wiyq | Fi) = 0* as. for some constant o,
— 00

where gofcl) and CID%H) are defined in (19). Write the estimate
Bn = (Bl Pan) T and 6 = [0 OT_q}T. For any non-random
v, € R? satisfying [lv,| < 1, let s2 = o%v,) R v, If

1

Assumptlons (A1)~(A4) hold and A2 Apin(n) =2 -2 0, then

sl ((Iq + A2p, (‘I)ﬁlu))*lpn,n) Bin — 910) —5 N(0,1),

(34)

where -5 denotes convergence in distribution and N (0, 1)
denotes the standard normal distribution.

Remark 8: The deterministic matrix R,,, satisfying (33) in
Theorem 3, can be regarded as a stability assumption for the
matrix @5111). This assumption plays a critical role; without
it, asymptotic normality may fail. For instance, Example 3
in [47] demonstrates that the absence of condition (33) may
result in the failure of asymptotic normality. Moreover, the
matrix R,, can be chosen as <I>(1 ) when the sequence {gp
is predetermined. Alternatively, if the sequence gon J} )T
is stationary and ergodic with a positive definite covariance
matrix, R,, can be set as nE[apgll)cpgll)T} > 0, as suggested
in [48].
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Proof: Write J,(8) in (13) as J,(8) = J.. (51, 52) with
B € R? and By € RP9, and let 3, = (617”6%) denote
its minimizer. By Theorem 1, ||3, — || — 0 a.s. Since each
component of 61 is nonzero, there exist ¢ > 0 and N (w) < oo
such that |31, (j)] > ¢ forall j=1,... ¢ and all n > N(w).
Hence, the first-order optimality condltlon with respect to 5y
reads 55~ (Bln,ﬂgn) = 0, that is,

-2 Z(yk-'rl — B0l — 322905@2))%05@1) + 2X2 P 1151n

k=1
. . . q
+ 20, Py 1202 + Afi) veo(sign(B1n (7)) 182 (1)) | = 0.
=
(35)

)

Using (1) and 6 = [0],,0)_,]", we have yi1 = 910<p(1
Wg41. Substituting into (35) and rearranging yields

Z@%QW( (I + A2n (@) Po1) i — 010

=- Z oDl + Z oW1 — AanPr2fan
k=1

- 7» 2 ved(sign(1a (1) 189)1 )|, (36)

Premultiplying (36) by (7)1 Ly, gives

syt T((I + Aoy (@G) 7P, 11)[31n—910)

— s o, (B4) T (Z ARSI +)‘2nPn,1232n>

1ZU ‘1)(11) 1%0(1)wk+1
) A A
—453 T (B00) (g (o 1) 20 e,

For the first term on the right-hand side of (37), by Theorem 2
we have 2, = 0 eventually, a.s., hence

( lim Zﬁgnw;f)wil

For the last term on the right-hand side of (37), since Bln —
010 and /3’2 — 019 while all entries of 619 are nonzero,
there exists a constant ¢5 > 0 such that [30(j)] > ¢5
for j = 1,...,q when n is sufficiently large. Moreover,
by the definition of s,, and the first condition in (33), we
have s, ' Apin(n)'/2 = O,(1). Together with the assumption
A2 N nin(n) =12 250, it follows that

and then by s,

(37)

+ Aan P 12Ban = 0) =1 (3%

Mt (200) 7 vee((sign(Ba (i) 186) ) [

j=1

A2 -1 1/2

in Sn q
< . .
- )\min(n)l/Q )\min(n)l/Q Cs
Hence, combining (37), (38) and (39), we obtain

2o, ((Iq + A2 (R TP, 1) Brn — 910)
n -1
= st vl (240) e + 0,(0).
k=1

In view of (33) and (40), and by Slutsky’s theorem [49], to

Lo, (39)

S

(40)
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prove (34) it suffices to show that

sgle;Rglcp,(:)wkH N N(0,1).

(41)

k=1
Along the lines of [47], the desired limit (41) follows from
the martingale central limit theorem of [50]. [ |

Remark 9: Theorem 3 immediately yields the asymptotic
normality of the algorithm proposed in [18] as a special case.
Let the estimator in [18] be denoted by /3, = (Bln, Ba) T
with (81, € R In particular, when Xy, = 0, /\ =0,
and )\ﬁ) satisfies Assumption (A4) together with the condition
)\ﬁ) /Amin(n)'/? L, 0, Theorem 3 implies that 3,, enjoys the
property s, v,y (Bin — 610) 4, N(0,1).

C. Group effect

In many practical applications, predictors can be naturally
partitioned into groups. As an illustrative example, consider
an uplink massive MIMO system with M base station (BS)
antennas and D users [51]: y,,, = ZdDzl AdTdm + N, Where
Ym denotes the received frequency-domain signal at the m-
th BS antenna, A, is the known input matrix associated
with the d-th user, and x4,, is the delay-domain channel
vector of the d-th user to the m-th BS antenna. The goal of
channel estimation is to recover {zgm,m :d=1,...,D, m =
1,..., M} from the set of received signals {y,, }M_,.

Due to finite scattering in physical propagation, only a
small fraction of the entries in x4 ,, are significant, while
the majority are zero, implying that the channel vectors are
sparse. Moreover, the channel vectors are naturally divided
into groups according to the user index d. Within each group,
the corresponding input variables tend to be highly correlated,
for instance, the input matrix Ay may be low-rank. An
effective channel estimation method should therefore satisfy
two desirable properties: (i) eliminate insignificant paths, and
(i1) automatically include all paths within a group once any
single path in that group is selected (i.e., achieve group
selection). Algorithm 1 fulfills both objectives: it performs
variable selection while simultaneously selecting groups of
correlated variables. Theorem 4 establishes that Algorithm 1
indeed possesses this group effect.

It is worth noting that a widely used method for enforcing
group sparsity is the Group Lasso [52], [53], which applies
an L, penalty to pre-defined groups of variables. While
Group Lasso can effectively select or discard entire groups, it
requires prior and exact knowledge of the grouping structure,
and it cannot directly handle overlapping groups or adapt to
correlation patterns that deviate from the pre-specified groups.
Moreover, Group Lasso tends to shrink all coefficients within
a group toward zero uniformly, which may lead to bias in esti-
mating large coefficients compared with methods that balance
L, sparsity and Lo coupling. In contrast, Algorithm 1 does
not rely on an explicit group partition: its Lo-coupling term
automatically promotes similarity among highly correlated
variables, allowing the group effect to emerge naturally from
the data without strict prior grouping.

Theorem 4: Given the dataset {ypi1,pr}}_q, let 3, be
the estimate produced by Algorithm 1 with the quadratic

penalty term A, 3" P,f3, where P, > 0. If Bn(i) > 0 and
Bn( /) > 0 for some indices ¢ and j, then

|(PuBn) (@) — (PuBa) ()] < Zy,m 37 (ki) = i)’

k=1
1 A(f}
X )\7 + 2 . A . A . 2 :
2n - 2X3, min (|67.(3)], [55(5)])

where Bg denotes the Step 1 estimate.

(42)

Furthermore, if P, is diagonal on coordinates (i,7) with
equal diagonal entries p; = p;; > p > 0, then (42) implies

n

Zka 3™ (r (i) = or()?

k=1

\%M—l

X

1 A2 )
— + ~ ~ 5 |-
Azn 223, min(|89(0)], 163(7)])

(43)

Remark 10: Inequality (42) shows that the P,-weighted
coefficients (P,/3,)(i) and (P,3,)(j) are close whenever
Sy (er(d) — cpk(j))2 is small (e.g., after standardization,
when the two regressors are highly correlated). If P, is
diagonal with p; = p;; > p > 0, or more generally block
diagonal with the (4, ;) block equal to al, for some a > p,
then (43) yields a direct bound on |£3,,(i) — 3, (j)|. Both the
Lo term and the weighted L, term contribute to the group
effect. However, in the pure L; case (A2, = 0), the bound in
(43) degenerates as Ag, | 0 and becomes uninformative; thus,
this inequality alone does not establish a group effect when
only the L; penalty is used.

_ Proof:  Because ,, minimizes jn(ﬁ) and Bn(z) > 0,
Brn(3) > 0, the first order optimality conditions on the i-th
and j-th coordinates read

—zz (i1 — B, sok) wk<>+A§32\32<i>|-1

722(yk+173;¢k)90k( )+)‘1n| 71(])|71
k=1 R

Subtracting (45) from (44) gives
2an ((Pafn)(@) = (PaBn)()) = =2 (1821~ = 182(5) )

+2)  (yes1 — B or) (o1(0) — o))
k=1
Hence,
. . A2 .
N | (PaBa) @) = (PaBa) ()] < S| 1820)1 " = 182)1 |
+ Z (Yrs1 — BJ%) (sﬁk(i) — ()| (46)
k=1

Since f3, is a minimizer, J,(0,) > J,(B,) implies

S (1 = A )"+ A 0 [0+ Ao BT P <

22:13/1%-5-1’ which yields Zk:l(yk+1 - Bn@k) <



w—1Yr1- Therefore, by Cauchy—Schwarz inequality,

Z (Vi1 — ﬁ;@k) (er (i) — or(4))

=1
n
2
= Z Y11
k=1

For the weighted L; term, by the mean value theorem there
exists & between |3%(i)| and |59 (5)| such that

_ 8@ = 18G)l]

37 (i) — o). 47)

k=1

[EHOIREHE

€2

826) - B )

~ (min{|BY)], 1831}
Plugging (47) and (48) into (46) gives
A2n (Pnén)(i) - (P’VLBTL)(.])‘
< U2 4| D (enli) — 9r(3)?
k=1 k=1
N 18R ~ ) )

A0/ 1A0 N2

2 (min{|B%(0)], 152()1})
Finally, applying the same argument to the Step 1 es-
timator 30 (the minimizer of J9) yields Ao, ’(P,LBQ)(Z') —

20N/ n n } N2
PG| < T Vi () — )
Combining this with (49) leads to (42). Moreover, if P, is
diagonal on the (7, j) coordinates with equal diagonal entries

pi = pjj = p > 0, then |(Pan)(@‘) _ (Pan)(j” _
P18 (i) — B (4)], and (43) follows. -

IV. APPLICATION TO IDENTIFICATION OF LINEAR
STOCHASTIC SYSTEMS UNDER SELF-TUNING
REGULATION CONTROL

In this section, we apply Algorithm 1 to the sparse identi-
fication of a closed-loop system under a self-tuning regulator
(STR) [54]. It is worth noting that in linear feedback control
systems, the regressors are typically non-stationary and de-
pendent [55], which poses additional challenges for parameter
estimation.

We consider the following sparse ARX model:

Yk+1 = @1yk + -+ Qny Ykr1-n, + 01ug + -

+ by Ukt 1—ny + Wit 1, (50

where yr+1 € R is the system output, ur € R is the

control input, w41 € R is the system noise, and aq, ..., an,,

bi,..., by, are unknown but sparse parameters.
For notational convenience, define
Alz) =1—a1z — -+ —an, 2",
B(z) =by +baz+---+ bnuznufl,
0= lat, . an, b1, bn]
Pk = [yk, e ,yk—i-l—nya Uky - - - ,U;H_l_nu]—r

Let {y;} denote a deterministic and bounded reference
signal. Within the framework of (50), our study addresses
two main objectives: (i) applying STR control to ensure
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that the closed-loop system output y; tracks the reference
signal y;; and (ii) achieving accurate identification of the
system parameters—namely, correctly determining which co-
efficients are zero and consistently estimating the nonzero
coefficients—under STR control.

Regarding the control phase, let 6, =
[a1,n, - - ,bn, n]" denote the LS parameter
estimate of the system. According to the Certainty Equivalence
Principle [54], the adaptive control law can be expressed as

. aany,ru bl,na v

1
uf) = bin (i1 + (brpur — 9;1@‘%)) : (S1)

In the identification phase, to ensure that the system’s track-
ing performance is not degraded after introducing excitation,
we adopt the diminishing excitation technique. Following [56],
we add a vanishing perturbation term to the control law (51),
leading to:

Vk
= )
TZ/—21

up = uf + E>1, (52)

where {v};} is a bounded i.i.d. sequence with E(v;) = 0 and
EW}) =1 =1+ Zi-:ll il & € (O,ﬁ); and
t = max{n,,n,} +n, — 1.

We now introduce the assumptions on system (50) required
for the subsequent stability and optimality analysis in Propo-
sition 1:

(B1) The noise {wy,} satisfies Jim . Zle w? =R >0as.;

(B2) The system is minimum-phase, i.e., B(z) # 0 for all
2] <15

(B3) |an, |+ [bn,| # 0.

Proposition 1: [56] Suppose that Assumptions (A1)—(A2)
and (B1)—(B3) hold. Then, for the system (50) operating under
the diminishing excitation control (51)—(52) based on the LS
parameter estimate, we have limsup;_, . 1 Zle (JJusll® +
yill?) < oo a.s., and limg_o0 & Zle (yi — y;‘)2 =R as,
and the regressor (y; satisfies the following excitation property:

)\max(n) = /\maX(Z 90199011—) = O(n)7
k=1

n
Amin(n) £ Amﬂ(Z @k@;) > Cnlié(H”l)’
k=1

for some ¢ > 0, which may depend on the sample path and
the £ defined below (52).

Given the input-output data {yx11,¢r}y_, generated by
(50)-(52), we apply Algorithm 1 to minimize the objective
function (13) and obtain a sparse estimate of the system
parameters: BL,n = [BAL,H(I), cel, BLn(ny + nu)]T Define
the true zero-parameter index set

D*={i:a; =0for 1 <i<mny b_n, =0
for ny, +1 <i<ny+n,},

and the estimated zero-parameter index set
D = {z‘:BL,n(i) —0 1 §i§ny+nu}.

The following theorem establishes the convergence of D .
Theorem 5: Suppose that Assumptions (Al) and
(B1)—(B3) hold, and consider Algorithm 1 with a positive
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definite weight matrix P,. Set )\&) = )\52) 1‘&(“’1)

and Aop Amax(Pn) = n7, with 0 < 7 < 1 — 2 (t +1)
in Algorithm 1, and ¢ € (0, ﬁ) in the controller
(52). Then there exists a set Qp with P() = 1 such
that for any w € €y there is an integer No(w) satisfying
D} = D* for all n > Np(w).

Proof: By Theorem 2, it suffices to verify Assumptions
(A3)(b) and (A4). First, since & € (O,i), we have
Amax(n)  /log Amax(n)  _ 0 Viogn 0, and

n—roo

Amin (1) Amin (1) - 5*%5“4’1)
hence Assumption (A3)(b) "is " satisfied. Next, setting
n™ with 0 < 7 < 1 — 2&(t + 1),

)\2n)\max(Pn) =
A(1)+A(2)+A2n IIIHX(P'VL) 1
= Olgmew) —
bi) S50
— b)

log )\max(n) )\max(n) _
0,
_ 1
Amin(1)? - O<n%5<t+1)> -+ 0.

we obtain 1o
AD £ 200 Amax (Pa >Am<n>\/m Viogn
)\(2) mm(n) mm(n)
Therefore, {)\(113,)\53, Aon P} satisfy Assumption (A4), and

Amin () +A2n Amin (Pr)
o(4E) -
AN+ 220 Amax (Pn) ) Amax
0, and ( = ( )) (n)
the conclusion follows from Theorem 2. [ |

V. SIMULATION STUDY

This section presents three numerical simulations and one
real-world example to evaluate the performance of Algo-
rithm 1. The experiments cover two finite impulse response
(FIR) systems, a linear feedback control system, and a vibrat-
ing flexible robot arm model from [57]. Since the objective
function (13) is strictly convex, we employ the CVX toolbox
for MATLAB to compute the minimizer in (14). All numerical
tests are conducted in MATLAB R2025a on a Lenovo desktop
(2.60 GHz, 32 GB RAM).

Example 1. This example illustrates the capability of Algo-
rithm 1 in improving estimation accuracy and performing vari-
able selection. Consider the FIR system yj11 = 0 | @ +wpt1,
where 6 € RP, the regressors {¢} are i.i.d. p-dimensional
Gaussian random vectors with zero mean and covariance
matrix ¥ = (0;)1<i,j<p. and the noise sequence {wy} is i.i.d.
N(0,1) and is independent of {¢}}. To introduce collinearity
among regressors, we consider two covariance structures:

(M) o5 = "7 with k = 0.7;

(D) 055 =1(i = j) + d]i — j|~ with § = 0.5 and v = 1.5.

We examine two settings: (p,q) = (15,10) and (p,q) =
(40,15). The true parameter vector is 6 = 1;/3, 3 x

1;/3, -2 x qu/S, 0,_ " For comparison, we consider three
methods: (i) the LS method [21]; (ii) the weighted L; method
[18]; and (iii) Algorithm 1. For [18], we set A\, = n%7 In
Algorithm 1, we choose A = A2 = 1,075 and )y, = n0-15,

To assess estimation performance, we use the MSE. To
evaluate variable selection, we compute the probability of
correctly selecting zero coefficients (PCS), and the probability
of incorrectly selecting nonzero coefficients (PIS). All exper-
iments are repeated 50 times.

Tables I and II show the results under different settings.
When the number of zero coefficients is small (p = 15,9 =
10), the LS method yields a lower MSE but fails to produce

sparse solutions. As the sample size and sparsity level increase,

TABLE |
ESTIMATION ERROR (MSE) AND SELECTION PERFORMANCE (PCS,
PIS) UNDER COVARIANCE STRUCTURE (I): o35 = kl*=il k= 0.7.

P n q Method MSE PCS PIS
LS 0.248 (0.428) 0 0
100 10  Algorithm in [18]  0.393 (0.399) 0.997 0
Algorithm 1 0.339 (0.380) 0.963 0
LS 0.200 (0.250) 0 0
15 200 10 Algorithm in [18] 0.294 (0.245) 0.997 0
Algorithm 1 0.213 (0.152) 0.983 0
LS 0.152 (0.167) 0 0
400 10  Algorithm in [18] 0.176 (0.146) 1.000 0
Algorithm 1 0.148 (0.120)  0.993 0
LS 1.301 (2.046) 0 0

100 15 Algorithm in [18] 0.982 (1.180) 0.992 0.005
Algorithm 1 0.888 (0.660) 0.970 0
LS 0.680 (1.519) 0 0
40 200 15 Algorithm in [18] 0.415 (0.423) 0.993 0
Algorithm 1 0.383 (0.221)  0.985 0
LS 0.339 (0.596) 0 0

400 15 Algorithm in. [18] 0.271 (0.357) 0.999 0.001
Algorithm 1 0.256 (0.169) 0.992 0

TABLE Il

ESTIMATION ACCURACY (MSE) AND SELECTION PERFORMANGCE (PCS,
PIS) UNDER COVARIANGE STRUCTURE (ll):
oij =1(i =j) 4+ 8|i —j|7Y WITHS = 0.5 AND v = 1.5.

p n g Method MSE PCS  PIS
LS 0.343 (0.413) 050 0

100 10 Algorithm in [18] 0.409 (0.498) 0.993 0.002
Algorithm 1 0.346 (0.323) 0977 0
LS 0.170 (0.232) 052 0
15 200 10 Algorithm in [18] 0211 (0.287) 0997 0
Algorithm 1 0.179 (0.197) 0990 0
LS 0.069 (0.112) 052 0
400 10 Algorithm in [18] 0.090 (0.091) 1.000 0
Algorithm 1 0.061 (0.081) 1.000 0
LS 1.754 (2.729) 0494 0

100 15 Algorithm in [18] 0.844 (0.946) 0.989 0.007
Algorithm 1 0.592 (0.418) 0990 0
LS 0.240 (0.350) 0496 0
40 200 15 Algorithm in [18] 0.191 (0.213) 0997 0
Algorithm 1 0.177 (0.139) 0998 0
LS 0224 (0.292) 0498 0
400 15 Algorithm in [18] 0.162 (0.181) 0.994 0
Algorithm 1 0.140 (0.123) 1.000 0

both Algorithm 1 and the method in [18] perform better, with
Algorithm 1 consistently achieving lower MSE because its Lo
term helps balance variance and bias. Both methods produce
sparse estimates; the method in [18] is slightly sparser but can
erroneously zero nonzero coefficients.

Example 2. This example illustrates the group selection
property of A]gorithm 1. Consider a multi-group FIR model
Yktl = Z Qg gok) + wgy1, With G = 10 groups and
Zlepg = 100. The true coefficient vector is randomly
generated so that all coefficients in each active group have
the same sign, while coefficients in inactive groups are set to
zero. For each group g, the regressor is generated as go,(f) =

VA, + VT=pel?, where p = 0.99, bl ~ N(0,1),



and e,(f) has i.i.d. M'(0,1) entries. Regressors from different
groups are mutually independent. The noise sequence {wy} is
iid. NV(0,1.5%) and is independent of all regressors. We set
N = 150 and run 100 Monte Carlo trials, comparing Algo-
rithm 1 with: (i) group LASSO with known and correct group
partition; (ii) group LASSO without group information, where
variables are randomly regrouped; (iii) weighted L; [18]; and
(iv) LASSO [7]. All methods use the regularization level
N+/log N/N as in (10) for a fair comparison.

Fig. 1 presents two performance measures: the top panel
shows boxplots of selection accuracy, and the bottom
panel displays the empirical cumulative distribution functions
(ECDFs) of the Lo estimation errors. With highly correlated
variables within each active group, Algorithm 1 tends to
retain all variables in active groups, yielding higher and more
stable selection accuracy with smaller estimation errors. Other
methods may select only a subset of variables within some
groups, reducing the stability of support recovery.

Accuracy (Boxplot): N = 150, G = 10, trials = 100

4§ I — —
£ 09F =
15)
S 08F -
Tor} 1 E 1
2 06} = —
> — -
505} —
£
2041 ==
& L L 1 1 L

Alg.1 GL (correct) [18] LASSO GL (wrong)

ECDF of Parameter Error: N = 150, G = 10, trials = 100

T T T
0.8 | 1
0.6 B
04l —e— Alg.l |
: —=— GL (correct)
[18]
02 ——1LASSO
—w— GL (wrong)
0 L . : L
0.5 1 1.5

2 2.5

Cumulative proportion

Normalized L, error

Fig. 1.  Comparative results in Example 2: boxplots of selection
accuracy (top) and ECDFs of estimation errors (bottom).

Example 3. This example demonstrates Algorithm 1 on
a sparse linear feedback control system with non-stationary
and dependent regressors, and examines the impact of P,
selection. Consider the ARX model (1) with

T
Cr = [yk7 Yre—1,--- ayk-i-l—nya Uy Uk—15- - - 7uk+1—nu] 5

where the noise {wy} is i.i.d. N(0,0.5). We set N = 1000
samples and repeat each experiment for 100 trials. The true
parameter § = [a',b"]" is sparse: the AR part a € R*
has five nonzeros (at indices {1, 2,23, 24, 45} with magnitudes
0.52, —0.17, 0.10, 0.04, and 0.18), and the input part b € R!2
has four nonzeros (at indices {1,4,6,9} with magnitudes
0.80, 0.50, 0.35, and 0.25). This setting satisfies Assumptions
(B1)—~(B3). The reference signal is y;, , = 25 sin(%) —
2003(2’5—0), k > 0. We use the certainty-equivalence dimin-
ishing excitation as in (52). Simulation parameters are set as
follows: € = 0.02 and v, ~ U(f\/g, \/?:) A representative
trajectory and the corresponding control input are shown in
Fig. 2, which demonstrates good control performance.

For each trial and along a growing sample grid n €

IEEE TRANSACTIONS AND JOURNALS TEMPLATE

{100,...,1000}, we compare seven estimators: five variants
of Algorithm 1 (Alg.1) with different quadratic penalties,
weighted L, [18], and LS. The five variants of Alg.1 cor-
respond to different choices of P,: (I) P, = Is7; () P, =
diag{0.545, 1.8115}; (IIl) P, = D' D, where D € RP—1)*P
is the first-order difference matrix with D;; = —1 and
D; ;41 = 1 [41]; AV) P, = blkdiag(L,, L,) with L, =
nylp, — 1,, 1;';/ and L, = n,I,, — 1nu1;u- We then set
P, + (1 — ) Py/Amax(Py) + ol with o = 0.7, following
standard Laplacian-based regularization [42]; (V) P, = (1 —
p) Ky +pply, where K, = L350 oppl, p= %tr(Kn), and
p = 0.4. The resulting matrix is symmetrized and scaled to
unit spectral radius, following the shrinkage approach of [43].
These constructions ensure that P, is positive definite.

We evaluate performance by the mean-squared error
MSE(0) = ||§—0||2/p. Fig. 3 shows the median and interquar-
tile range (IQR) of the MSE as the sample size n increases.
Alg. 1 yields lower median errors and smaller variation than
both weighted L; and LS. The boxplot at n = N in Fig. 4
further confirms the advantage of Alg. 1.

Tracking: STR with diminishing excitation (ny = 45, n, = 12)

0 200 400 600 800

1000
k
Control input iy
20 T T
5 0
0 . . . .
0 200 400 600 800 1000

k

Fig. 2. Tracking results in Example 3: reference and actual outputs
(top), and control input (bottom).

5 X107 MSE evolution over n (trials = 100)
—e—Alg.l: (I) P, =157
4 —=—Alg.1: (I) P, = diag{1.8I4s, 0.311}
Alg.1 : (IIT) first difference penalty

Q3 —&— Alg.1 : (IV) group Laplacian penalty
o —v—Alg.1: (V) sample Gram penalty
2]
g, Ref. [18]

< 2 e e re e
>

100 200 300 400 500 600 700 800 900
Sample size n

1000

Fig. 3. Median and interquartile range bands of MSE over sample size
n across different algorithms.

Example 4. A high-fidelity robot model is essential for pre-
cise positioning and for minimizing tracking errors in robotic
applications. Following the setup in [57], we use the vibrating
flexible robot arm dataset, with experimental analyses also
reported in [30], [58]. The dataset contains 40,960 samples
at 500 Hz. The input is the driving torque and the output
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1074 Final MSE comparison
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Fig. 4. Final MSE comparison at n = N for different algorithms.

Variants of Alg. 1 are denoted by (I)—(V), corresponding to different Py,.

is the acceleration measured at the arm’s tip. We compare
Algorithm 1 with the methods in [18], [30], [58]. Since the true
system is unknown, model quality is assessed via a hold-out
validation: the first 1:7000 data points are used for estimation,
and the interval 10,000:40,960 is reserved for validation. All
identified models are of order 2500. To evaluate performance,

we use the FIT index: FIT = 100(1 — %
y is the measured output and ¢ is the simulated output. A FIT
value closer to 100% indicates higher simulation accuracy.

Table III reports the validation FIT for five Alg.1 variants
(D—-(V), with configurations identical to Example 3. Among
them, the sample-Gram variant (V) attains the highest FIT
(85.209%). For reference, the 80.100% and 79.900% FITs are
quoted from the original papers [30], [58]; all Alg.1 variants
outperform these baselines. Moreover, Fig. 5 compares the
measured output with the two best Alg.1 variants (V) and
(D) on the window [40,300, 40,960], confirming the high
estimation accuracy. Fig. 6 shows that all six methods produce
sparse models. Among them, the curve of Alg.1 (V) lies
farthest to the right (i.e., it needs more coefficients to reach
90% energy). This means Alg.l1 (V) keeps some medium-—
size coefficients instead of discarding them. These coefficients
capture small effects and improve data fitting. Fig. 7 displays
the top—100 coefficients. Alg.1 (V) concentrates most of them
in the lag range 0-600, while the other methods either miss
some in this range or spread weight to longer lags. This focus
within 0-600 matches the system’s short memory.

, where

TABLE Ill

FIT OF DIFFERENT ALGORITHMS ON EXAMPLE 4.
Algorithm FIT
Alg.l: () P, = I57 85.140%
Alg.l: (H) Pn = diag{1.8 145, 0.3 112} 85.138%
Alg.1: (IIT) first-difference penalty 85.169%
Alg.1: (IV) group Laplacian penalty 85.140%
Alg.1: (V) sample Gram penalty 85.209%
(18] 83.988%
(58] 80.100%
[30] 79.900%

RobotArm validation 40300 : 40960

0.6 |-

=
=
& ’\ b\d ‘1 *‘A l‘l ‘[N
=
© H
L8
04F —— Measured
0.6 - —e— Alg.1: sample Gram penalty
: Alg.1: first difference penalty
-0.8 ! ! !
4.03 4.04 4.05 4. 06 4. 07 4.08 4.09 4.1

Sample index x10*

Fig. 5. Measured output v.s. the estimated output of two best models.

Cumulative energy on |bj|-sorted coefficients

1 0.9 Sdddadadadddgg g gy
§ 081 Y [ Reference line (0.9) b
;l)) 06 —e— Alg.1: (I) P, =Is7at kgg = 430 |
Z = -Alg.l: (II) P, =diag{1.8145, 0.31),} at koyg = 429
% 0.4 Alg.1: (IIT) first difference penalty at kgg = 507 | |
g —6— Alg.1: (IV) group Laplacian penalty at kgy = 430
O 0.2 —w - Alg.1: (V) sample Gram penalty at kog = 606

I —-- Ref. [18] at kog = 451
0() 500 1000 1500 2000 2500

Coefficient rank r (sorted by |b,| desc.)

Fig. 6. Cumulative energy curves of absolute-sorted coefficients for six
algorithms.

VI. CONCLUSION

This paper presents a refined identification framework that
simultaneously addresses collinearity and promotes sparsity,
with theoretical guarantees of almost sure parameter conver-
gence, almost sure set convergence, and asymptotic normality
under non-i.i.d. and non-stationary observations. The proposed
approach integrates weighted L; and Lo regularization: the
weighted L, term induces sparsity, while the Lo term enhances
stability, improves estimation accuracy, and enables group
selection. Its effectiveness has been demonstrated in sparse
parameter identification for linear feedback control systems.

Sparse stem (Top-100)
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Fig. 7. Sparse stem plots of the top-100 coefficients for six algorithms.



Future research directions include extending the approach
to stochastic sparse systems in high-dimensional settings in
which p = p(n), and developing recursive algorithms suitable
for real-time identification and control design.
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APPENDIX

We first present a useful technical result.
Lemma 4: Let A, B € RP*P be positive definite matrices.
If A2 < B2, then ||[B~14] < 1.

Proof: For any nonzero vector x € RP, let y = B~ 'x.
Then [|AB~1al|? = ||yl = yT A% < y B% = 2'a =
|z||?. Since B~'A is the adjoint of AB~1, it follows that
1B A = [|AB~!|| = sup, 4, A8 <1. u
Proof of Lemma 3. By the definition of 8, (1, aan, 1), it
follows that

Jn(ﬁn(alna Q2np, 77n), Qin, O2n, nn) < Jn<97 Ain, O2n, nn)-

(53)
Using (1) and (15), and noting that §(j) = 0 for j = ¢ +
1,...,p, we obtain
(9 Qn, a2n777n)
7Zwk+1+alnz7]n P+ 20 0 Paf. (54)
and
Jn( n(alnva2na77n)va1n,042n,77n)

2
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1
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E
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-2 (Bn (alfru Q2 7771) - G)TZ PrWEk41
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Noting that aqy, Z?:q-‘,—l nn(]) |6n(aln7 a2n777n)(j)| > 0,

and using (55)—(54), we have

Jn (ﬁn(alna Q2n, nn)a Q1n, O2n, nn) - Jn(aa Q1p, O2p, nn)
n
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Now we estimate M,(Li), 1 =1,...,4, separately. Let

N

Z@k@g"‘aZnPn (ﬁn(a1n7a2n777n) - 9) (57)
k=1
First, by direct calculation, it follows M, (1)+Mn =6 6,—
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we then have
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Second,  noting  that > ._, o) <
Sh_iokpi 4+ @ P,, by Lemma 4 we have
1 1
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so there exists a constant ¢; > 0 such that, for all sufficiently
large n,

M > \/1og Amax () [[62]]- (59)
Last, for MT(L4), by the Cauchy—Schwarz inequality,
q
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Substituting (53), (58), (59), and (60) into (56) yields
0> [|6,]* — aan max( 68 — 0l
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q
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By solving the quadratic inequality (61) with respect to ||d,, ||
and using (a + b)? < 2a? + 2b%, we obtain

H5HH2 S C% log Amax( ) + 2a2n max(

Znn

where, for brevity, Bn denotes B, (1n, aon, 1, ). Moreover,
recalling (57) and using

— Oqp Hﬁn alnua2n7nn) _6H (61)
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Consequently,
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which completes the proof. |
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